## Term Information

| Effective Term | Spring 2020 |
| :--- | :--- |
| Previous Value | Summer 2012 |

## Course Change Information

What change is being proposed? (If more than one, what changes are being proposed?)
Revision of the 6601-6602 syllabi:
Topics have been rearranged and more advanced topics added.
The catalog description and prerequisites have been updated accordingly.
References to quarter courses have been removed.
One of the four credits has been identified as am individually scheduled lab requirement.
What is the rationale for the proposed change(s)?
The course sequence is intended serve as a required (also elective) for a newly proposed applied mathematics track in the mathematics PhD program. The rigor and sophistication of the content, the level of training, as well as the required preparations of the sequence thus needed to be adjusted to match that of our traditional track as well as the expected strength of incoming students.
What are the programmatic implications of the proposed change(s)?
(e.g. program requirements to be added or removed, changes to be made in available resources, effect on other programs that use the course)? As noted above, Math 6602 will constitute a core gateway course requirement for the applied mathematics track. The 6601-2 sequence also serves as an elective in the traditional track but has historically very rarely been used by students as an elective. The impact on the traditional track is thus expected to be minimal.

Is approval of the requrest contingent upon the approval of other course or curricular program request? Yes
Please identify the pending request and explain its relationship to the proposed changes(s) for this course (e.g. cross listed courses, new or revised program)

This course approval request is submitted in conjunction with the change request for Math 6601 as well as the approval of the proposal for an applied math track/subplan.

Is this a request to withdraw the course? No

## General Information

| Course Bulletin Listing/Subject Area | Mathematics |
| :--- | :--- |
| Fiscal Unit/Academic Org | Mathematics - D0671 |
| College/Academic Group | Arts and Sciences |
| Level/Career | Graduate |
| Course Number/Catalog | 6602 |
| Course Title | Numerical Methods in Scientific Computing II |
| Transcript Abbreviation | Num Meth Sc Comp 2 |
| Course Description | Approximation theory: interpolation, proiection, integration; Initial value problems: one- and multi-step <br> methods, Runge-Kutta methods, stability analysis; PDEs: advection equation, diffusion equation, stability <br> analysis. <br> Interpolation and approximation theory; numerical differentiation and integration; time evolution ODEs; <br> boundary value ODEs; eigenvalues, including Krylov subspace methods; solving linear systems using <br> iterative methods. |
| Previous Value | Fixed: 4 |

## Offering Information

| Length Of Course | 14 Week, 12 Week |
| :--- | :--- |
| Flexibly Scheduled Course | Never |
| Does any section of this course have a distance <br> education component? | No |
| Grading Basis | Letter Grade |
| Repeatable | No |
| Course Components | Laboratory, Lecture |
| Previous Value | Lecture |
| Grade Roster Component | Lecture |
| Credit Available by Exam | No |
| Admission Condition Course | No |
| Off Campus | Never |
| Campus of Offering | Columbus |

## Prerequisites and Exclusions

| Prerequisites/Corequisites | Math 6601 |
| :--- | :--- |
| Previous Value | Prereq: 6601 (708) |
| Exclusions |  |
| Previous Value | Not open to students with credit for 709 |
| Electronically Enforced | No |

## Cross-Listings

## Cross-Listings

## Subject/CIP Code

Subject/CIP Code
27.0301

Subsidy Level
Intended Rank

Doctoral Course
Doctoral

## Requirement/Elective Designation

Required for this unit's degrees, majors, and/or minors
The course is an elective (for this or other units) or is a service course for other units
Previous Value

The course is an elective (for this or other units) or is a service course for other units

## Course Details

[^0]
## Content Topic List

Previous Value

## Sought Concurrence

## Attachments

## Comments

## Workflow Information

- Approximation theory: Polynomial interpolation, orthogonal polynomials, orthogonal projection, best approximation.
- Numerical integration, Gauss quadrature, bounded and unbounded domains
- Initial value problem (IVP): basic methods, Euler forward, mid-point rule, truncation errors.

Analysis of one-step methods: consistency, convergence, stability.
Multi-step methods. Adams methods, BDF methods.

- Runge-Kutta methods
- Zero-stability for IVP, absolute stability for ODEs.
- PDE: boundary value problems, steady-state diffusion equation. Parabolic problems. Von Neuman analysis. Method of lines.
- Linear advection equations: Euler forward, Leapfrog, Lax-Friedrichs, Lax-Wendroff.
- Stability analysis. Upwinding methods, CFL condition. Multi-dimensions. Boundary conditions.
- Interpolation and approximation theory
- Numerical differentiation and integration
- Time evolution ODEs
- Boundary value ODEs
- Eigenvalues, including Krylov subspace methods
- Solving linear systems using iterative methods

No

- MATH6602_Syllabus_ed_2019_03_04.pdf: Math 6602 Syllabus
(Syllabus. Owner: Kerler, Thomas)

| Status | User(s) | Date/Time | Step |
| :--- | :--- | :--- | :--- |
| Submitted | Kerler,Thomas | $03 / 19 / 2019$ 08:48 PM | Submitted for Approval |
| Approved | Husen,William J | $03 / 20 / 2019$ 09:30 AM | Unit Approval |
| Approved | Haddad,Deborah Moore | $03 / 20 / 2019$ 10:04 AM | College Approval |
| Pending Approval | Nolen,Dawn <br> Vankeerbergen,Bernadet <br> te Chantal <br> Oldroyd,Shelby Quinn <br> Hanlin,Deborah Kay <br> Jenkins,Mary Ellen Bigler | 03/20/2019 10:04 AM | ASCCAO Approval |

## Numerical Methods for Scientific Computing II

## Instructor and Class Information

Lecturer:
Office:
Phone:
Email:

Course Num.:
Lecture Room:
Lecture Times:
Office Hours:

## About Course Goals

## FORMAT

The course includes three 55-minute meetings a week and a one-hour, individually scheduled lab. Instruction will be mainly lectures delivered by the instructor. It may also include occasional inclass discussion as well as short student presentations, particularly by post-candidacy students.

## Description \& Goals

This course covers the core numerical methods for scientific computing. The major topics include: basic approximation theory, methods for initial value problems and ordinary differential equations, and finite difference methods for partial differential equations.

## Prerequisites

Math 6601, or instructor's permission

## Textbook

## MAIN REFERENCES

A. Quarteroni, R. Sacco, F. Saleri: "Numerical Mathematics", Springer, 2000. ISBN: 0-387-98959-5.
R. LeVeque: "Finite Difference Methods for Ordinary and Partial Differential Equations: Steady-State and Time-Dependent Problems", SIAM 2007. ISBN: 0-898-71629-2.

## Assessments

## Homework Assignments

There will be approximately 10 homework assignment sheets, which will typically contain several fully described problems as well as a list of numbers of textbook problems. Due dates of assignments will be announced and set typically a week after the assignments are published

## Final Project

The final project is a more extensive written assignment that will draw on techniques acquired throughout the semester and via the weekly lab. It will be published about two weeks before the end of classes and will be due at the beginning of finals week.

## Class Participation and Attendance

Although attendance is not regularly monitored frequent absences are likely to be noted and may factor into the grade in borderline cases.

## Grading

## Course Score

A course score will be computed from the above assessments. Homework assignments will count $70 \%$ towards the grade and the final project $30 \%$.

## LETTER GRADES

Letter grades will be determined based on the course score.

## Weekly Schedule

| Week $\mathbf{1}$ | Approximation theory: Polynomial interpolation, orthogonal polynomials. |
| :--- | :--- |
| Week $\mathbf{2}$ | Approximation theory: Orthogonal projection, best approximation |
| Week $\mathbf{3}$ | Gaussian integration, Gauss quadrature, bounded and unbounded domains |
| Week $\mathbf{4}$ | Initial value problem (IVP): basic methods, Euler forward, mid-point rule, truncation errors |
| Week 5 | IVP: analysis of one-step methods: consistency, convergence, stability |
| Week 6 | IVP: multi-step methods. Adams methods, BDF methods. |
| Week 7 | Runge-Kutta methods |
| Week 8 | Zero-stability for IVP |
| Week $\mathbf{9}$ | Absolute stability for ODEs |
| Week 10 | PDE: boundary value problems, steady-state diffusion equation. |
| Week $\mathbf{1 1}$ | PDE: Parabolic problems. Von Neuman analysis. Method of lines |
| Week $\mathbf{1 2}$ | Linear advection equations: Euler forward, Leapfrog, Lax-Friedrichs, Lax-Wendroff |
| Week $\mathbf{1 3}$ | Stability analysis. Upwinding methods, CFL condition |
| Week $\mathbf{1 4}$ | Multi-dimensions. Boundary conditions. |

## General Policies

## Academic Misconduct

It is the responsibility of the Committee on Academic Misconduct to investigate or establish procedures for the investigation of all reported cases of student academic misconduct. The term "academic misconduct" includes all forms of student academic misconduct wherever committed; illustrated by, but not limited to, cases of plagiarism and dishonest practices in connection with examinations. Instructors shall report all instances of alleged academic misconduct to the committee (Faculty Rule 3335-5-487). For additional information, see the Code of Student Conduct (https://trustees.osu.edu/index.php?q=rules/code-of-student-conduct/)."

## Disability Services

Students with disabilities that have been certified by Student Life Disability Services will be appropriately accommodated and should inform the instructor as soon as possible of their needs. Student Life Disability Services is located in 098 Baker Hall, 113 W. $12^{\text {th }}$ Ave; telephone 614-292-3307, VRS 614-500-4445; https://slds.osu.edu/.


[^0]:    Course goals or learning • Acquire a strong knowledge and skill set in doctoral level numerical methods in scientific computing objectives/outcomes
    Previous Value

